An introduction to efficient estimation for semiparametric time series

نویسندگان

  • Priscilla E. Greenwood
  • Ursula U. Müller
  • Wolfgang Wefelmeyer
چکیده

We illustrate several recent results on efficient estimation for semiparametric time series models with two types of AR(1) models: having independent and centered innovations, and having general and conditionally centered innovations. We consider in particular estimation of the autoregression parameter, the stationary distribution, the innovation distribution, and the stationary density.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

Extended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy

Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...

متن کامل

Modelling financial time series with SEMIFAR-GARCH model

A class of semiparametric fractional autoregressive GARCH models (SEMIFARGARCH), which includes deterministic trends, difference stationarity and stationarity with shortand long-range dependence, and heteroskedastic model errors, is very powerful for modelling financial time series. This paper discusses the model fitting, including an efficient algorithm and parameter estimation of GARCH error ...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Eecient Estimation in Markov Chain Models: an Introduction

We outline the theory of eecient estimation for semiparametric Markov chain models, and illustrate in a number of simple cases how the theory can be used to determine lower bounds for the asymptotic variance of estimators and to construct eecient estimators. In particular, we consider estimation of stationary distributions of Markov chains, of autoregression parameters and innovation distributi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002